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Benzoazabicyclo[4.3.1] derivatives by intramolecular
Michael addition of piperidinone enolates to enoates
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Abstract

Piperidinones with a 2-bromobenzyl substituent in the 5-position were subjected to a Heck coupling reaction with ethyl acrylate
resulting in the highly functionalized cinnamates 9a–d. A subsequent deprotonation of the piperidinones using NaN(SiM3)2 in THF
induced an intramolecular Michael addition of the enolate to the cinnamate part. In this way, a range of novel 2,6-methano-4H-4-ben-
zazonines 10–13 were obtained. In each case, a separable mixture of endo/exo-diastereomers was obtained.
� 2008 Elsevier Ltd. All rights reserved.
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The benzomorphan substructure 1 as present in the
alkaloid morphine (2) has inspired the design and synthesis
of many related analogs (Fig. 1).1 Thus, various substitu-
tents have been introduced. Moreover, derivatives with a
repositioned nitrogen atom were reported in the literature.1

Finally, azabenzobicycloalkanes with smaller or homolo-
gated rings were targeted.2,3 An example for an analog with
repositioned nitrogen atom and smaller ring is varenicline
(3), which is used as a drug for smoking cessation.4
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Fig. 1. Structures of the benzomorphan skeleton (1), morphine (2), and
varenicline (3).
In the course of a program directed at the synthesis of
azabenzobicycloalkanes using organometallic transforma-
tions as a key step, we could recently demonstrate the syn-
thesis of 1,5-methano-3-benzazocines by intramolecular
Buchwald–Hartwig arylation of 2-piperidinones (Scheme
1).5 The corresponding substrates were fashioned from
bromoiodobenzenes via a short sequence consisting of a
Jeffery–Heck reaction6 with allylalcohol, enamine forma-
tion of the resulting aldehydes, Michael addition of the
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Scheme 1. Intramolecular Buchwald–Hartwig route toward the synthesis
of 1,5-methano-3-benzazocines.
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Table 2
Intramolecular Michael addition of the piperidinone enolates generated
from 9a–d to the enoate function yielding the 2,6-methano-4H-4-
benzazonines 10a,b–13a,ba
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enamine to ethylacrylate producing 4-formylesters,7 and
finally a reductive amination with benzylamine and sodium
cyanoborohydride. The overall yield for the three-step
sequence from 4 to 7 amounts to 20–33% (compounds
7a–c). Compound 7d was prepared by a slightly different
sequence. Thus, the bromine was introduced at the stage
of the corresponding amide.5 The intramolecular Buch-
wald–Hartwig arylation of the piperidinones via the corres-
ponding zinc enolate8 opened a novel route to 1,5-
methano-3-benzazocines.

As we discovered, the arylbromide in piperidinones 7

with the 2-bromobenzyl substitutent could be engaged in
a classical Heck reaction9,10 with ethyl acrylate leading to
acrylates 9a–d in good chemical yields (Table 1). These
Heck coupling reactions were performed in DMF at
100 �C in the presence of ethyl acrylate (3 equiv), Pd(OAc)2

(10 mol %), Ph3P (20 mol %), Et3N (5 equiv), and Cs2CO3

(2 equiv) in 24 h. Due to the difficulties in removing the
byproduct triphenylphosphine oxide from the Heck prod-
uct 9c, the reaction of 7c with ethyl acrylate was carried
out with the Buchwald ligand N-[20-(dicyclohexyl-
phosphino)-1,10-biphenyl-2-yl]-N,N-dimethylamine.11 The
acrylate function in cinnamates 9a–d presents itself for
Table 1
Heck coupling of ethyl acrylate with the 5-(2-bromobenzyl)-piperidinones
7a–da,b
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a Reaction conditions: 0.3 M in DMF, acrylate (3 equiv), Ph3P
(0.2 equiv), Cs2CO3 (2 equiv), Pd(OAc)2 (0.1 equiv), Et3N (5 equiv),
100 �C, 24 h.

b 7a: R1 = R2 = H; 7b: R1 = H, R2 = Me; 7c: R1 = OMe, R2 = H; 7d:
R1 = R2 = OMe.

c N-[20-(Dicyclohexylphosphino)-1,10-biphenyl-2-yl]-N,N-dimethylamine
(0.2 equiv) was used as ligand.
Diels–Alder or Michael-additions. In fact, intramolecular
Michael addition-based methods represent a classical
and important strategy for intramolecular C–C bond
formations.12 For example, this strategy has found a broad
use for the synthesis of bicyclic systems.13 Furthermore,
the double Michael domino reaction is an important
method for the construction of complex molecular
architectures.14,15
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a Reaction conditions: 0.05 M in THF, NaN(SiMe3)2 (2 equiv), 0 �C,
then room temperature, 30 min.
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Fig. 3. Representative 2,6-methano-4H-4-benzazonines prepared by Man-
nich reactions.
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In fact, when a THF solution of cinnamate 9a was trea-
ted with a solution of NaN(SiMe3)2 (2 equiv) at 0 �C
followed by stirring of the mixture for 30 min at this
temperature, the novel 2,6-methano-4H-4-benzazonines
10a and 10b were produced (Table 2). The two diastereo-
mers could be separated by chromatography. In a related
manner, the other acrylates 9b–d were cyclized to the cor-
responding benzoazabicyclo[4.3.1] derivatives 11–13. Other
bases, like LDA or LiN(SiMe3)2 turned out to be less effi-
cient in promoting this anionic cyclization. Performing the
cyclization with 3 equiv of NaN(SiMe3)2 at 0 �C followed
by allowing the mixture to warm to room temperature
within 5 h gave essentially the same ratios. However, the
yields of the products were lower, at the expense of very
polar side products. In the case of 9a and 9b, the ratio of
the endo/exo-diastereomers was around 3:2. With the sub-
strates containing methoxy groups in the aryl ring (9c and
9d), the ratio was roughly 1:1.

In order to find out whether the product ratios are the
result of kinetic or thermodynamic control, pure diastereo-
mer 11a was treated with NaN(SiMe3)2 (2 equiv) under
various conditions. Stirring the resulting mixture at room
temperature for 30 min or at 0 �C for 1 h left 11a

unchanged. The other diastereomer 11b could not be
detected. If a substoichiometric amount of NaN(SiMe3)2

(0.95 equiv) was employed at room temperature, followed
by quenching of the reaction after 10 min, a ratio of 1:2:1
(9b, 11a,b) was observed. From these experiments, it can
be concluded that the diastereomeric ratios are the result
of kinetic control.

The assignment of the relative stereochemistry of the
two diastereomers required the knowledge of their pre-
ferred conformation and the detection of significant differ-
ences in the NMR spectra. According to calculations
performed by Chem3D 9.0 (MM2) on the simple model
compound 14, the tricyclic compounds endo-14 and exo-
14 each can exist in two conformations. In both cases,
one conformer is significantly favored over the other one.
The most stable conformer for each diastereomer is shown
in Figure 2. Therefore, it is reasonable to just consider the
low-energy conformation for each diastereomer. In the
NOESY NMR spectrum of 10a (endo-isomer), 1-H showed
Fig. 2. Calculated conformations for the endo- and exo-isomers of the
model compound 14.
a characteristic cross-peak with one of the protons of the
one carbon bridge (12-H). Furthermore, a cross-peak is
visible between 1-H and one 7-H. However, due to signal
overlapping, this is less clear-cut. In contrast, in the exo-
isomer 10b, these NOESY interactions do not occur.
The endo- and exo-isomers of these 2,6-methano-4H-4-
benzazonines show a distinct difference in their 1H NMR
spectra. For example, in the endo-isomer 10a, 2-H
(d = 2.76 ppm) appears as a doublet (J = 4.3 Hz). In con-
trast, 2-H (d = 2.90 ppm) of the exo-isomer 10b couples
to two neighboring protons, showing a doublet of doublet
(J = 5.3, 5.3 Hz). This can be explained by an almost 90�
dihedral angle between 1-H/2H in the endo-isomers. The
calculated angle for endo-14 is 82�.

The literature contains a few examples for 2,6-methano-
4H-4-benzazonines. Typically, they are prepared by
Mannich reaction. Two representative examples are shown
in Figure 3 (Eq. 1)16 and (Eq. 2).17,18

In conclusion, we could develop a novel strategy to 2,6-
methano-4H-4-benzazonines. Key steps include a Heck
reaction on aryl bromides with a piperidinone appendage.
Treatment of the resulting cinnamate containing piperidi-
nones with base induced an anionic cyclization (Michael
addition) to provide the azabicyclo[4.3.1]systems. The aver-
age overall yields for this operational simple sequence lead-
ing to the functionalized benzazonine derivatives 10–13 are
about 10%.
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